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of cognitive, social, and communicative challenges, which 
have a significant impact on the child, their family and soci-
ety in general, including areas such as education, the health-
care system, and employment.

Early intervention during the initial years of life emerges 
as a pivotal factor in the management of ASD, owing to its 
potential for favorable outcomes facilitated by neuroplasti-
city (Dawson, 2008). Unfortunately, in a majority of cases, 
ASD is not detected until after the age of 4 (Baio et al., 
2018), leading to a missed critical window for early stimu-
lation. The subtle nature of early signs of autism presents 
challenges for both clinicians and caregivers. Therefore, 
any behavioral cues that raise concerns should be diligently 
combined with clinical assessments to enable the early iden-
tification of atypical development. This proactive approach 
enables the timely implementation of intervention strate-
gies, thereby improving the child’s long-term prognosis and 
substantially elevating their overall quality of life.

Over the last decade, numerous studies have leveraged 
Artificial Intelligence (AI) to analyze early signs of ASD 
in children using various neurophysiological signals, such 
as eye-tracking (Jones et al., 2023), electroencephalograms 
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Purpose The objective of this study is to identify the acoustic characteristics of cries of Typically Developing (TD) and 
Autism Spectrum Disorder (ASD) children via Deep Learning (DL) techniques to support clinicians in the early detection 
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months. Statistical analysis was applied to find differences between groups for different voice acoustic features such as jitter, 
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Results We found a statistical significant increase in jitter and shimmer for ASD cries compared to TD, as well as a decrease 
in HNR for ASD cries. Additionally, the DL algorithm achieved an accuracy of 90.28% in differentiating ASD cries from TD.
Conclusion Empowering clinicians with automatic non-invasive Artificial Intelligence (AI) tools based on cry vocal bio-
markers holds considerable promise in advancing early detection and intervention initiatives for children at risk of ASD, 
thereby improving their developmental trajectories.
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(Gabard-Durnam et al., 2019), magnetic resonance imaging 
(Shen et al., 2022), and functional near-infrared spectros-
copy (Conti et al., 2022), to detect potential indicators of 
ASD before behavioral symptoms appear.

However, the techniques mentioned above are considered 
reliable but involve complex clinical procedures, implying 
substantial hospital expenditures (Okoye et al., 2023). This 
fact combined with the recent success of top Deep Learn-
ing (DL) techniques applied to much more accessible and 
low-cost unstructured data signals, has shown promising 
potential in the domain of early ASD detection (Kim et al., 
2023; Kojovic et al., 2021; Manigault et al., 2023). In this 
context, cry analysis has emerged as a compelling approach 
for early ASD detection due to its accessibility, non-inva-
sive nature, cost-effectiveness, and ease of recording in both 
clinical and home settings. It allows for longitudinal assess-
ment, enabling researchers to track developmental changes 
over time, and is strongly associated with neurodevelop-
mental conditions (Esposito et al., 2017; Oren et al., 2016). 
Infant cries provide a unique window into the neurological 
and physiological state of the infant (Laguna et al., 2023; 
Laguna, Pusil, Bazán, Laguna et al., 2023a, b; Orlandi et 
al., 2012), offering the potential to identify early markers 
of ASD through acoustic features. Research has identified 
atypical cry patterns in toddlers with ASD under 18 months, 
with differences observed in acoustic features such as jitter, 
shimmer, harmonic-to-noise ratio (HNR), and fundamental 
frequency (F0) (Orlandi, Manfredi, Orlandi et al., 2012a, 
b; Santos et al., 2013; Sheinkopf et al., 2012; Unwin et al., 
2017). Machine learning (ML) algorithms have also been 
applied to classify these cries, revealing its promising pre-
dictive value as a vocal early indicator of ASD (Khozaei et 
al., 2020; Manigault et al., 2023).

In this study, our primary objective is to determine the 
distinctive acoustic characteristics present in cries from 
children aged 18 to 54 months, comparing those with TD to 
those with ASD. Moreover, we aim to assess the potential 
application of cry analysis using DL techniques to support 
clinicians in the early detection of ASD. Empowering clini-
cians with automatic, non-invasive AI-driven cry vocal bio-
markers tools presents a compelling avenue for enhancing 
early detection endeavors. This has the potential to signifi-
cantly advance early intervention strategies, leading to more 
timely and precisely targeted support for children at risk of 
ASD, thereby enhancing their developmental trajectories.

Methods

Participants

The study participants were drawn from the cry dataset from 
(Khozaei et al., 2020), which encompassed a total of 62 indi-
viduals aged between 18 and 54 months. This cohort was 
divided into two distinct groups: 31 individuals diagnosed 
with ASD and 31 TD individuals. Within each group, there 
were 24 boys and 7 girls. The average ages for the ASD 
and TD groups were 35.6 and 30.8 months, respectively. 
The autism diagnosis procedure started with the Gilliam 
Autism Rating Scale-Second Edition (GARS-2) question-
naire (Samadi & McConkey, 2014) which was answered by 
the parents. Then the caregivers were interviewed, based on 
the Diagnostic and Statistical Manual of Mental Disorders, 
5th edition (DSM-5) (Wiggins et al., 2019), while the par-
ticipants were evaluated and observed by two Ph.D. degree 
child clinical psychologists. In addition, the diagnosis of 
ASD was separately confirmed by at least a child psychia-
trist in a different setting. It is important to note that the offi-
cial version of Autism Diagnostic Observational Schedule 
(ADOS) is not available for Farsi. Thus, there are different 
approaches taken to evaluate participants in Iran (Samadi & 
McConkey, 2014).

Data Collection

As explained by (Khozaei et al., 2020), data was recorded 
using high-quality devices (74.2%, Sony UX560 and 
UX512F voice recorders) and smartphones with a custom 
voice-recording application (25.80%). Recordings were 
made in WAV format (16-bit, 44.1 kHz) to ensure consis-
tency across devices. A variety of devices and recording 
locations such as homes (12.90% ASD sample, 45.16% TD 
sample), autism centers (87.10% ASD sample) and health 
centers (54.84% TD sample) were used to avoid bias and 
increase generalizability. Parents and trained voice collec-
tors were instructed to record in quiet environments with 
the devices held approximately 25 cm from the participant’s 
mouth. Recordings not meeting these conditions, as well as 
cries associated with pain, were excluded. The reasons for 
crying differed between the ASD and TD groups, reflecting 
distinct behavioral and emotional triggers. In both groups, 
the most common causes were related to complaining or 
discomfort (74.20% for ASD group and 67.75% for the TD 
group), while other factors such as sleepiness, hunger, and 
anxiety (25.80% for the ASD group and 32.25% for the TD 
group) also contributed to the crying episodes. In the pre-
processing phase, only pure crying sounds were retained, 
with segments containing other vocalizations or non-empty 
mouth cries eliminated. Finally, the average number of 
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cry instances per infant per group includes for the ASD 
group: 6.10 ± 5.05 instances, while the TD group showed 
5.39 ± 3.66 instances. For more details, see Supplementary 
Material Table 1 S.

Ethical Considerations

The study protocol received approval from the ethics com-
mittee at Shahid Beheshti University of Medical Sciences 
and Health Services, Tehran (Iran). Prior to enrollment, 
comprehensive informed consent was acquired from the 
parents or legal guardians of the participants. This ensured 
they were well-informed about the study’s objectives, pro-
cedures, and possible advantages and risks.

Procedures

For this publicly available dataset, we extracted a range of 
pitch-based audio features for each cry pattern using Praat 
software (Boersma, 2002). The total number of frames 
depends on both the audio duration and the time step used. 
Perturbation vocal metrics, including jitter, shimmer, and 
HNR, were chosen due to their widespread use in clinical 
contexts (Meghashree & Nataraja, 2019; Teixeira et al., 
2013). Jitter measures pitch variability over time by cal-
culating the mean absolute difference between consecutive 
pitch periods, using a period range from 0.0001 to 0.02 s 
and a pitch floor of 1.3 to eliminate low-frequency noise. 
Shimmer quantifies the amplitude variation between succes-
sive pitch periods, applying the same parameters as jitter 
but with an added amplitude ratio of 1.6 to capture shimmer 
across each audio frame. HNR quantifies the periodicity of 
the voice signal, with higher values indicating more peri-
odic (voiced) sounds and lower values suggesting noisier 
(aperiodic) signals. HNR was calculated using an autocorre-
lation-based method in Praat, analyzing the signal in short, 
overlapping frames. For more details, see Supplementary 
Material.

Statistical Analysis

Following the extraction of quantitative features, an explor-
atory analysis was conducted to discern statistically signifi-
cant differences between the studied groups for each feature. 
P-values were computed using the U Mann-Whitney test 
designed for independent samples. Results are reported in 
terms of mean ± standard error mean and statistically sig-
nificant p-values are coded as follows: ***p < = 0.001, ** 
p < 0.01 and * p < 0.05.

Deep Learning Classification Analysis

To demonstrate the potential of DL techniques for automated 
classification of cry patterns into ASD and TD, we trained 
a Recurrent Convolutional Neural Network (R-CNN) from 
scratch. This hybrid architecture combines the strengths of 
Convolutional Neural Networks (CNNs), which excel at 
extracting spatial features (Krizhevsky et al., 2017; LeCun 
et al., 2015) and Long Short-Term Memory (LSTM) recur-
rent networks, which capture extended temporal relation-
ships in sequential data (Bahdanau et al., 2016; Graves, 
2014). Hybrid CNN-LSTM models have been successfully 
applied in tasks with a sequential component like video and 
speech recognition (Donahue et al., 2016).

The R-CNN architecture used the extracted spectro-
graphic information as image representations, which serves 
as input to the model. Input images of size 128 × 128 with 
a single channel (grayscale) are processed through a CNN 
block with a kernel size of 3 and 32 output channels, captur-
ing spatial features.

This architecture consists of a CNN with three convolu-
tional layers (comprising 32, 64 and 64 filters, respectively) 
and two LSTM layers with 288 neurons, followed by one 
fully-connected layer with 128 units. For the purpose of 
this study, 80% of the available dataset was used for model 
training, while the remaining 20% was set aside to assess the 
model performance and derive validation metrics. The data 
distribution includes 140 samples for TD and 147 samples 
for ASD in the training set, while the testing set comprises 
28 samples for TD and 44 samples for ASD.

To initialize the weights of our R-CNN model, we 
employed the Kaiming uniform initialization (He et al., 
2015) technique, known to promote stable convergence dur-
ing training. To mitigate the risk of overfitting, we imple-
mented multiple regularization techniques. Specifically, we 
employed Dropout (Srivastava et al., 2014) with a rate of 
0.2 in each of the LSTM layers. In addition, to enhance gen-
eralization, we integrated two data augmentation methods, 
namely Frequency Masking and Time Masking (Park et al., 
2019), which were randomly applied to the training split.

The Adam optimizer (Kingma & Ba, 2017) was utilized 
for the gradient descent, coupled with a Cyclic learning rate 
(lr) scheduler (Smith, 2017). The base lr was set to 10e-6, 
and a maximum lr reached to 10e-5. To strike a balance 
between computational efficiency and model convergence, 
we established a batch size of 16. Throughout the training 
process, we monitored both Binary Cross Entropy (BCE) 
loss and accuracy for both the training and validation sets.

The training process spanned 2000 epochs, with the 
model exhibiting superior validation accuracy being desig-
nated as the final trained classifier. All aspects of the train-
ing procedure, including data preprocessing and model 
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Deep Learning Classification of Autistic Cry Patterns

The classification analysis aimed to evaluate the efficacy 
of audio features in distinguishing between cries of chil-
dren with ASD and TD. The R-CNN algorithm exhibited 
remarkable performance, achieving a validation accuracy 
of 90.28% (AUC 90.83%). Furthermore, the model exhib-
ited a specificity of 88.64%, a recall of 88.64%, precision of 
95.12%, and an F-score of 91.75% (Table 1).

Discussion

The current study delved into the potential of DL techniques 
to differentiate between cries of children diagnosed with 
ASD and those TD, within an age range of 18 to 54 months. 
First, we aimed to objectively identify characteristic differ-
ences in cry patterns between the two groups through the 
analysis of audio features, including attributes such as jit-
ter, shimmer, and HNR. The second aim was to establish 
the feasibility of leveraging an AI-based automatic system 
to accurately identify these characteristic differences in the 
spectrogram’s cry patterns.

Our study revealed notable differences between the ASD 
and TD groups in various frequency-based cry features. 
Precisely, the ASD group exhibited increased levels of jit-
ter and shimmer coupled with a reduced HNR when con-
trasted with the TD group. Our results are consistent with 
previous research (Santos et al., 2013), which also identified 
increased levels of jitter and shimmer, along with reduced 
HNR, as distinguishing acoustic features in children with 
ASD integrated into a ML model to classify ASD and TD 
groups. The study further emphasizes that these vocal qual-
ity differences, linked to breathiness, hoarseness, and rough-
ness, can serve as early biomarkers for ASD or even other 
disorders or pathologies (Meghashree & Nataraja, 2019; 
Santos et al., 2013; Teixeira & Fernandes, 2015).

optimization, were implemented using the PyTorch v.2.0.1 
framework.

DL performance metrics were reported in terms of accu-
racy (the proportion of true results -both true positives and 
true negatives- among the total number of cases examined), 
sensitivity (number of ASD instances, the proportion of true 
positives correctly identified by the model) and specificity 
(number of TD instances, the proportion of true negatives 
correctly identified by the model). Additional DL methods 
were tested, for more details referred to the Supplementary 
Material.

Results

Vocal Perturbation Measures in Autism

We performed a statistical exploratory analysis of cry 
acoustic features to assess and characterize the differences 
between ASD and TD cries. Figure 1 illustrates the statisti-
cally significant features identified in this analysis for each 
group. Notably, the ASD group exhibited higher levels of 
jitter, and shimmer compared to the TD group (p < 0.01). 
Furthermore, a significant reduction in HNR was observed 
in the ASD group relative to the TD group (p < 0.0001).

Table 1 Metrics obtained in the DL classification for the ASD and TD 
acoustic cry patterns. Performance metrics are reported in terms of 
accuracy, sensitivity (true positives, number of ASD instances), speci-
ficity (true negatives, number of TD instances), and F-score
Perfor-
mance 
Metrics

Accuracy Sensitivity Specificity Precision F-score

Model
Acous-
tic Cry 
Pat-
terns
R-CNN

90.28% 88.64% 88.64% 95.12% 91.75%

Fig. 1 Statistically significant differences between the ASD and TD group. ** represents a statistically highly significant difference p < 0.01 from 
pairwise comparisons. *** indicates a statistically highly significant difference p < 0.001 for all the pairwise comparisons

 

1 3



Journal of Autism and Developmental Disorders

Conclusion

Early signs of infant atypical development are frequently 
challenging for clinicians and caregivers. Often, clinical 
procedures are invasive and non-accessible. Thus, doc-
tors lack signs raising the alarm during the first months of 
life. Nevertheless, early screening and detection of autism 
are crucial for initiating timely interventions and support, 
enhancing the overall outcomes and well-being of affected 
children and their families. The statistical trends and AI 
techniques show encouraging results suggesting the poten-
tial utility of the automatic cry analysis as a reliable non-
invasive and objective tool for identifying early markers of 
autism using cry as a vocal biomarker in early childhood.
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Consequently, these findings indicate distinctive cry 
characteristics associated with ASD children, pointing to 
the potential value of these features in effectively discerning 
between the two groups during early-stage ASD screening 
and assessment.

Regarding the automatic classification of ASD and TD 
cries, previous research (Khozaei et al., 2020; Motlagh et 
al., 2013) with the same dataset used ML pattern recogni-
tion algorithms to distinguish between ASD and TD cry pat-
terns within the ages range of 2 to 3 years. They extracted 
various audio features such as temporal features, energy fea-
tures, harmonic features, perceptual and spectral features. 
Their SVM model showed an average accuracy of 89.3% 
accuracy including both genders (Khozaei et al., 2020). 
Notwithstanding, our study is pioneering on using DL for 
classification of ASD and TD cries without gender differen-
tiation being able to predict if a cry belongs to an autistic or 
neurotypical child with a precision of 90.28% even in a very 
reduced dataset.

To translate this approach into clinical practice, the pro-
posed tool could be integrated as a complementary aid in 
pediatric evaluations or as an at-home screening resource 
for caregivers. Its non-invasive nature and ease of use would 
allow for continuous remote monitoring, potentially enhanc-
ing early detection and facilitating timely interventions. 
However, successful implementation would require clini-
cian training and addressing ethical considerations. Further 
research should focus on real-world testing and integration 
strategies to maximize clinical utility and acceptance.

Limitations

While our findings highlight the potential of using cry 
acoustic features and DL for early autism identification, the 
study generalizability is limited by the sample size, demo-
graphic variation, and the specific age range of participants 
(18 to 54 months). Future research should include larger, 
more diverse populations across different age groups and 
cultural backgrounds to validate the model performance in 
varying developmental stages and contexts. Additionally, 
cry characteristics may evolve as children grow, potentially 
influencing model accuracy, making it essential to explore 
age-specific models. Another limitation is that autism diag-
nosis in this study was conducted using the GARS-2 paren-
tal questionnaire and a DSM-5-based parental interview by 
child clinical psychologists, with independent confirmation 
by a child psychiatrist. However, the widely used ADOS 
tool was not administered due to the lack of an official Farsi 
translation, which is less common in Iran. Expanding the 
dataset and refining diagnostic methodologies will be cru-
cial for improving the robustness and applicability of this 
approach in broader populations.
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