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Introduction: Even though infant crying is a common phenomenon in humans’ 
early life, it is still a challenge for researchers to properly understand it as a 
reflection of complex neurophysiological functions. Our study aims to determine 
the association between neonatal cry acoustics with neurophysiological signals 
and behavioral features according to different cry distress levels of newborns.

Methods: Multimodal data from 25 healthy term newborns were collected 
simultaneously recording infant cry vocalizations, electroencephalography 
(EEG), near-infrared spectroscopy (NIRS) and videos of facial expressions and 
body movements. Statistical analysis was conducted on this dataset to identify 
correlations among variables during three different infant conditions (i.e., resting, 
cry, and distress). A Deep Learning (DL) algorithm was used to objectively and 
automatically evaluate the level of cry distress in infants.

Results: We found correlations between most of the features extracted from 
the signals depending on the infant’s arousal state, among them: fundamental 
frequency (F0), brain activity (delta, theta, and alpha frequency bands), cerebral 
and body oxygenation, heart rate, facial tension, and body rigidity. Additionally, 
these associations reinforce that what is occurring at an acoustic level can 
be  characterized by behavioral and neurophysiological patterns. Finally, the 
DL audio model developed was able to classify the different levels of distress 
achieving 93% accuracy.

Conclusion: Our findings strengthen the potential of crying as a biomarker 
evidencing the physical, emotional and health status of the infant becoming a 
crucial tool for caregivers and clinicians.
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1. Introduction

Human infants’ communication through crying shares its 
evolutionary basis with animal distress calls and is based on their 
physical and emotional state (Friedlander, 2006) under the solicitation 
of help-provisioning and nurturing behavior (Bylsma et al., 2019). 
Thus, newborn crying may function as a distant early warning signal 
or “biological siren” (Golub and Corwin, 1985) that engages the 
caregiver’s attention and demands their return to the infant’s side 
(Porges et al., 1994). In contrast with discrete signals, which manifest 
little variation in duration or intensity, infant crying fits much better 
in the concept of graded signals that convey degrees of distress and 
that reflect the intensity and duration of the eliciting stimulus. Hence, 
the sounds of crying convey a level of distress and/or urgency of need 
(Friedlander, 2006).

Research studies published in the last few years focused on the 
identification of the acoustic cry features (LaGasse et  al., 2005; 
Manfredi et  al., 2018) to study the well-being of the newborns, 
neonatal diseases (Lawford et  al., 2022) and neurodevelopmental 
disorders (Esposito and Venuti, 2010) through signal processing and 
Artificial Intelligence (AI) techniques (Farsaie Alaie and Tadj, 2012; 
Zabidi et al., 2018; Morelli et al., 2021). Acoustic cry features include 
fundamental frequency (F0) (Porter et  al., 1988), resonance 
frequencies (F1-F3) related to vocal tract maturation, parameters of 
vibrato rate and extent (jitter and shimmer), and noise levels (Wermke 
et al., 2002). While infant cry analysis has been extensively studied, 
limited research has explored the acoustic characteristics of distinct 
cry states. Existing studies primarily focus on pain cries, which exhibit 
greater variations in F0 (Bellieni et al., 2004; Zamzmi et al., 2018). 
Additionally, several recent studies focused on the development of AI 
tools in neonatal medicine highlighting its potential as a powerful tool 
to support clinical decision making, personalized care, precise 
prognostics, and enhance patient safety (Kwok et al., 2022).

The production of infant cry vocalizations is a complex process 
requiring coordinated brain activity and involvement of the central 
nervous system, which includes laryngeal activity, respiratory 
movements, and supralaryngeal (articulatory) activity under 
parasympathetic vagal control (Bylsma et al., 2019). In infant crying 
literature, the vagus nerve plays a crucial role in influencing acoustics, 
particularly the fundamental frequency (F0) (Porter et  al., 1988; 
Porges et al., 1994). F0 increases are primarily influenced by vocal fold 
tension, which is modulated by the contraction of laryngeal muscles 
innervated by sympathetic and parasympathetic (vagal) inputs from 
the autonomic nervous system. Specifically, vagal input from the right 
nucleus ambiguus of the medulla inhibits vocal muscle contraction, 
leading to lower vagal activity resulting in higher F0 during infant 
crying (Vogt and Barbas, 1988). This vagal control of the larynx not 
only affects vocal intonation but also influences heart rate and reflects 
specific emotional states. Distress and urgency in infant cries are 
acoustically evident, alongside facial expressions, vagal tone, cortisol 
levels, bodily movements, and brain activity (Porges et al., 1994).

Several studies have explored the relationship between vagal 
function, F0 in infant crying, and the polyvagal hypothesis in typically 
developing infants (Porter et al., 1988; Shinya et al., 2016). Porter et al. 
(1988) reported the correlation between cardiac vagal tone and the F0 
of crying in term newborns who experienced a circumcision 
procedure. In this case, the vagal tone, measured by respiratory sinus 
arrhythmia (RSA), was significantly reduced during the severely 

stressful procedure, and the reduction was paralleled by a significant 
increase in the F0 of the pain infants’ cries.

Regarding brain activity during crying, few studies (Vogt and 
Barbas, 1988) suggest the brain stem model of crying, supported by 
animal studies and human cases that focus on the implication of basal 
ganglia, cerebellum, and brainstem in anencephalic infants (Newman, 
2007). Furthermore, primate studies have suggested the implication 
of bilateral cingulate cortex, limbic system-anterior part, and 
hippocampal gyri in crying vocalization (Kaada, 1951). Nonetheless, 
the localization of brain regions associated with vocalization and 
crying in human infants remains a difficult task (Vogt and 
Barbas, 1988).

Nowadays, brain signals can be non-invasively and continuously 
measured by near-infrared spectroscopy (NIRS) and/or 
electroencephalography (EEG). There are few studies (Futagi et al., 
1998; Manfredi et al., 2008) related to the brain activity associated 
with the newborn’s cry acoustic features. Manfredi et al. (2008) show 
that the blood oxygenation level in preterm newborns is affected by 
stress caused by the effort required during crying. Considering EEG, 
Futagi et al. (1998) analyzed the neurophysiological activity evoked in 
the theta band of 29 infants with EEG, finding that the cry elicited a 
posterior theta brain activity.

In summary, scarce research has been accomplished to understand 
infant cry by concurrently assessing diverse newborn’s measures. 
Thus, this manuscript presents an exploratory study where a 
multimodal data collection has been conducted to understand if cry, 
EEG, NIRS, facial expressions and body movements have associations 
among them and with newborns’ distress conditions.

First, our aim was to characterize and compare the different cry 
distress levels of newborns using the features mentioned above. 
Second, to determine the associations between cry acoustics with the 
neurophysiological and behavioral features depending on the level of 
cry distress of the newborn and estimate their concordance. Finally, 
our third aim was to build a DL audio classification algorithm to 
demonstrate the objectivity of qualitative audio annotation and to 
automatically evaluate the level of cry distress in infants to prove its 
potential as a signal biomarker supporting clinicians on the assessment 
of the infant’s well-being. Therefore, we hypothesized that what is 
occurring at an acoustic level can also be characterized and associated 
with behavioral and brain neurophysiological patterns underlying the 
human infant cry.

To our knowledge, this is the first study that uses cry audio 
analysis as a potential clinical biomarker of newborns’ distress state, 
cross-validated with behavioral and brain signal analysis in newborns 
being a valuable tool in the future neonatology.

2. Methods

2.1. Participants

Twenty-five healthy full-term newborns mean gestational week 
39.24 ± 7.82, recording age 7.27 ± 11.40 days after birth, 15 males/10 
females, head circumference 34.08 ± 1.43, birth weight 
3020.20 ± 324.11, Apgar Score at one 8.84 ± 0.85, five 9.79 ± 0.66 and 
10 min 9.94 ± 0.24, umbilical cord PH (pHAU) 7.23 ± 0.07, type of 
delivery: eutocic (n = 18)–dystocic (n = 7), were recruited at the 
Hospital Clínic Barcelona (Spain). Infants had been assessed by 
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board-certified neonatologists and diagnosed as healthy term 
newborns with no major congenital abnormalities or illness since 
birth. More details are provided in Supplementary material.

2.2. Procedure

Data collection was performed during the standard routine of 
newborn nursing (before and post feeding, etc.). As such one session 
was conducted with each neonate. Synchronized EEG, NIRS, audio, 
and video recordings were acquired for each newborn, who was lying 
down comfortably in a cot in the hospital maternity ward.

Different cry distress levels were defined as changes in the 
newborn’s status generated by uncomfortable scenarios (i.e., fuzziness, 
stress, pain, etc.), yielding in the following conditions: resting, cry and 
distress. Through the paper the words cry distress levels will be used 
to express the different cry conditions studied as mentioned before. 
The cry distress levels were defined also based on the outcome 
obtained through the COMFORT scale (Van Dijk et  al., 2000; 
Wielenga et al., 2004).

To ensure proper data synchronization among diverse data 
sources, all devices were accurately synchronized using timestamps 
before each session. This synchronization was complemented by the 
inclusion of manual markers in every signal. The synchronization 
process was conducted offline using the aforementioned markers. 
Throughout the data collection process, two technicians per recording 
session were involved. They marked the occurrence of various events 
during data acquisition by pressing a button on each device (EEG Nëo 
system, NIRS-Massimo Root O3, ZOOM H1N™ manual audio 
recorder and video recorder) including infant crying, end of infant 
crying, awake states, active sleep, quiet sleep, holding the newborn, 
feeding, excessive movement, and more. Figure  1 shows the 
experimental design and overall analysis pipeline.

2.3. Audio analysis pipeline

2.3.1. Data acquisition
Newborn crying emissions were recorded by a manual recorder 

(ZOOM H1N™) equipped with a unidirectional microphone, 
positioned at a fixed distance (30 cm) from the infant’s mouth with 
sampling rate Fs = 48 kHz and 24-bit resolution. Cries were never 
induced for the purpose of the study, as spontaneous vocalizations are 
part of normal infant behavior. Several audio recordings were 
registered during each session, to include various crying episodes, 
with a suitable amount of time both before and after each cry episode. 
During the recording, environmental noises, including human speech 
and noises from mediwcal machinery, were also captured. Thus, our 
dataset resembles that of real-world samples.

2.3.2. Data processing

2.3.2.1. Segmentation
Audio recordings were manually segmented into cry episodes 

(CEs–the amount of time the infant cries in each audio recording 
divided by silence periods). Then, CEs were manually segmented into 
cry units (CUs - individual cry patterns within a CE separated by an 
expiration phase). Visual spectrographic analysis was carried out 

using iZotope RX 7 Audio Editor™. CEs and CUs were classified 
based on spectral content and intensity (Gustafson and Green, 1989; 
see Figure 1A). Two authors experts on infant cries annotation(AL, 
PP) individually reviewed and annotated all CEs and CUs in terms of 
spectrographic features and duration identifying the categories: cry 
and distress. Cries without unanimous agreement were excluded from 
further analyzes to ensure data quality throughout the whole analysis. 
Afterwards, the three different distress levels have been acoustically 
identified in every CE:

 • resting: no CEs, pause or resting periods with silent audio 
recordings, the newborn is not crying but awake/alert state.

 • cry: CEs composed by lower spectral content CUs and milder 
acoustical intensity.

 • distress: more acoustically intense CEs that are composed of high 
spectral content CUs.

2.3.3. Feature extraction

2.3.3.1. Cepstrum analysis
To prove the objectivity of qualitative annotation and the potential 

to automatically differentiate cry distress levels, several Machine 
Learning (ML) and DL algorithms were applied. The first approach 
used the first 13 Mel Frequency Cepstral Coefficients (MFCCs) of 
every CU as input features computed using the Python 3 package for 
audio analysis Librosa. The second approach uses spectrograms of 
each CU and a Convolutional Neural Network (CNN) (O’Shea and 
Nash, 2015) with 2D convolutional and dense layers. To prevent 
overfitting, pooling, and batch normalization layers were incorporated 
for training optimization. Both approaches utilized 80% of the samples 
for training the model and 20% to validate the algorithm during the 
learning process.

2.3.3.2 Time analysis
Within CEs (cry episodes), the actual cries are not continuous 

vocalizations, but punctuated by inspirations and spontaneous pause 
or silence periods. The total duration in seconds of cry parts within 
the CE is defined as cryCE (amount of cry in cry episodes) while the 
total sum of seconds of unvoiced periods (inspirations, pauses, etc) 
within the CE is named as unvoicedCE (unvoiced parts in cry 
episodes). Percentages of cry and unvoiced parts within every CE were 
also computed and described as cryCE (%) and unvoicedCE (%) 
respectively.

2.3.3.3. Frequency analysis
Audio processing of each CU was conducted through Praat 

software (Boersma, 2002) using a band-pass filter between 200 and 
1,200 Hz to compute the F0 and a low-pass filter of 10,000 Hz to 
compute the spectrum (Rautava et  al., 2007). Audio recordings 
were collected with a sampling rate of 48,000 Hz. The main 
frequency features include F0 and its descriptive statistics 
(maximum, minimum, mean, standard deviation), the resonance 
frequencies of the vocal tract (F1, F2, F3) along with the percentage 
of high pitch (F0 > = 800 Hz) (Kheddache and Tadj, 2013) and 
hyper-phonation (F0 > = 1000HZ) (Zeskind et al., 2011) level of the 
CU were computed. Other voice quality parameters related to the 
phonation of the vocalization are also included: local jitter (Jitter: 
micro-variations of the F0 measured with pitch period length 
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deviations), local shimmer (Shimmer: amplitude deviations 
between pitch periods), harmonic to noise ratio (HNR, quantifies 
the amount of additive noise in the voice signal) (Teixeira 
et al., 2013).

2.4. Electroencephalography pipeline

2.4.1. Data acquisition
Neurophysiological data were acquired using an ANT Nëo 

Monitor eego™ (ANT Neuro, Germany) with 8 EEG channels. The 
electrodes were placed according to the extended 10–20 positioning 
system (channels F3, F4, C3, C4, T7, T8, P3, P4) and were later 
re-referenced offline to the average reference. The sensor impedance 
was kept below 10kΩ, and EEG data were acquired at a sampling rate 
of 512 Hz.

2.4.2. Data processing
The dataset was analyzed offline using Matlab r2022a with the 

Brainstorm Toolbox (Tadel et al., 2011). A band-pass filter between 1 

and 45 Hz was applied to the EEG data to remove power line 
contamination and low frequency artifacts. EEG data were manually 
examined by a careful visual inspection to detect and remove artifacts 
confirmed by an EEG expert (SP), taking into account the following 
steps: (1) Identifying channels that are contaminated by noise or 
artifacts (flat channels, impedances checks, jumps, ocular, muscle 
activity or excessive movement, etc). (2) Interpolating channels 
marked as bad using spherical splines (Perrin et  al., 1989). A 
maximum of 1 channel was interpolated from a trial and if more 
channels were found as bad the whole trial was rejected from the 
analysis. (3) Identifying a trial as good if the average amplitude of the 
channels was less than 200 μV (Cohen, 2014; Komosar et al., 2022). 
Also, we  considered trials that showed only continuous and 
synchronous EEG patterns since all the infants were full term around 
39 weeks (Eisermann et  al., 2013; St Louis et  al., 2016). Higher 
frequencies, from beta to gamma range, were not included in the 
analysis to avoid contamination with muscle activity. The remaining 
artifact-free data were segmented into four-second epochs, according 
to the audio/distress segmentation criteria to the following conditions: 
resting, cry, and distress. EEG data analysis was performed for the 

FIGURE 1

Paradigm, data acquisition, and analysis pipeline. (A) Audio was recorded and segmented in cry episodes and cry units depending on the distress levels 
of the cry. Then, time and frequency features were extracted with Praat and noise/outliers were removed with a band-pass filter. (B) Video was 
recorded for each session and the newborn’s facial expressions and body movements were assessed through the COMFORT scale. (C) EEG data were 
collected for the whole session; a preprocessing step as shown here was then applied to ensure high data quality. Lastly, clean EEG data were 
segmented according to the audio segmentation and the power spectrum was computed. (D) NIRS data were acquired for the whole session and a 
pre-processing pipeline as shown in this panel was followed. As for the EEG, NIRS data were segmented with the audio segmentation procedure. 
Consent was obtained from the family to publish the newborn’s face in the figure for publication.
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following classical frequency bands: delta (ẟ: 1-4 Hz), theta (θ: 4-8 Hz) 
and alpha (α: 8-12 Hz). Additionally, the power spectrum of each EEG 
sensor was computed by using Welch’s periodogram method (Welch, 
1967). For each sensor, relative power was calculated by normalizing 
the power at each frequency by total power over the 1–45 Hz range.

To quantify the relative power changes across conditions with 
respect to the resting state, the total relative power of the frequency 
bands analyzed was considered as 100%, and the percentage of relative 
power for each frequency band was calculated for each sensor and all 
the conditions.

2.5. Near-infrared spectroscopy pipeline

2.5.1. Data acquisition
Root O3™ (Masimo, United States) was the equipment selected 

for NIRS data acquisition. This device uses NIRS forehead sensors to 
enable measuring regional hemoglobin oxygen saturation (rSO2), i.e., 
the central oxygenation level. Functional arterial hemoglobin oxygen 
saturation (SpO2), i.e., the peripheral oxygenation level and pulse rate 
(PR-bpm), i.e., the heart rate signal are continuously and 
non-invasively monitored with a fingertip sensor on the newborn.

2.5.2. Data processing
rSO2, SpO2, and PR-bpm data were collected every 2 s and saved 

by the device. Later, these variables were exported offline and analyzed 
in Python 3. NIRS data that were characterized by a standard deviation 
lower than 0.5 were not considered in the analysis to eliminate errors 
from the data acquisition process. Also, the interquartile range 
(1.5*IQR) method was used to remove outliers. The remaining 
non-rejected data were segmented into normal cry, distress and 
resting time episodes based on the timestamps obtained in the audio 
segmentation criteria. The 15 s preceding and following each segment 
were discarded. In addition, a low band-pass filter was applied to the 
corresponding CE intervals removing SpO2 values whose mean were 
lower than 80% (Lu et al., 2014), rSO2 lower than 50% (Lian et al., 
2020), or PR-bpm lower than 70 beats per minute (Kliegman and 
Geme, 2019) to eliminate noise and errors derived from 
newborn’s movements.

2.6. Facial expression and body movement 
analysis

Nowadays, neonatologists use common tools to measure distress 
levels in newborns from a qualitative perspective, especially assessing 
crying, facial expressions, and body movements. Among them, the 
COMFORT scale allows for assessing distress levels, states, sedation, 
and pain in nonverbal pediatric patients, being cry characteristics part 
of the assessment (Van Dijk et al., 2000; Wielenga et al., 2004). The 
COMFORT scale was adapted to Spanish, and it has been shown to 
be a valid and reliable tool (Cronbach alpha coefficient of 0.785 for 
newborns) to assess comfort levels in a group of children admitted to 
a Spanish Intensive Care Unit (Bosch-Alcaraz et al., 2020, 2022). The 
COMFORT scale has been used to qualitatively evaluate the video 
recordings of facial expressions and body movements during each 
session and to identify the levels of cry distress.

2.6.1. Data acquisition and processing
A high-quality video recording of the newborn was acquired for 

each session ensuring the registration of facial expressions and body 
movements following a standardized protocol. Afterwards, two 
experts reviewed (AL, IAP) and assessed the newborns individually 
according to the COMFORT scale for each CE on the video. In case 
of disagreement between the experts, a third reviewer (AP) was asked 
to present their evaluation. The aspects evaluated include six sections: 
alertness, agitation, crying, body movements, muscular tone, and 
facial tension. Each section can be rated from 1 (calm infant) to 5 
(stressed infant) and the total distress score of each CE ranges from 6 
to 30, with larger score values indicating a higher arousal threshold.

2.7. Statistical analysis

Statistical analysis was performed using Matlab r2022a, Graphpad 
Prism 8 and SPSS22. Comparisons were conducted between resting, 
crying, and distress conditions for audio, EEG, NIRS, and the 
COMFORT scale. The Shapiro–Wilk test was applied to verify that 
data were not normally distributed. Data collection involved 
spontaneous cry recordings, resulting in imbalanced condition 
segments. Thus, representative segments were randomly selected for 
each signal feature (audio, EEG, NIRS).

ANOVA and Tukey–Kramer tests were used to compare audio 
and NIRS processed data, with bootstrapping (10,000 repetitions) for 
normality correction. Mann–Whitney U-test were used for EEG and 
COMFORT scale data pairwise, while Kruskal-Wallis test for 
comparison for more than 3 conditions. For EEG pairwise 
comparisons, the Holm-Bonferroni correction method was applied 
while for the 3 condition comparisons the Dunn’s test was selected.

For an integrative approach, the Spearman (Rho) correlation 
coefficient was used to correlate all features. Additionally, the Kendall 
Coefficient of Concordance (W) was calculated to assess the level of 
agreement between audio features with EEG, NIRS and COMFORT 
scale. We used Cohen’s interpretation guideline (Cohen, 2013), where 
W > = 0.5 corresponds to strong agreement effects.

3. Results

3.1. Deep learning algorithm to identify cry 
distress levels based on cepstral analysis

The comparison of ML and DL techniques to automatically and 
objectively evaluate the manual segmentation of the cry recordings 
and therefore identify different cry levels (Figure 2A) is presented in 
the current section.

Through the manual segmentation we were able to identify 1,473 
cry CU, and 491 distress CU. This dataset was divided into training 
(1,572 CU) and validation (392 CU) sets to train a classifier. A random 
split approach has been applied. ML and DL models were trained 
using the training set. The RF model achieved 89% accuracy, 97% 
sensitivity, and 57% specificity rates on the validation set 
discriminating distress vs. non-distress conditions. Instead, the CNN 
model achieved 93% accuracy, 83% sensitivity, and 95% specificity 
rates (Figure 2B).
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3.2. Time and frequency acoustic features 
characterizing cry distresss levels

The present section shows the results obtained by comparing the 
cry features extracted with the cepstral analysis and the different cry 
distress levels identified through the 1964 CU extracted through the 
manual segmentation.

Table 1 shows the differences between conditions for the acoustic 
features for time and frequency domain analysis. The time domain 
analysis showed that the unvoiced CE as its percentage was shorter for 
distress compared to the cry condition. On the other hand, CryCE 
exhibited longer periods for cry condition compared to the presence 
of distress.

Moreover, F0 (mean), F0 (min) and HNR decreased in the distress 
condition compared to the cry one. An increase in features such as F0 
(max), F0 (std), F1, F2, F3, high-pitch (F0 > 800 Hz) and hyper-
phonation percentage (F0 > 1,000 Hz), Jitter, and Shimmer were found 
for distress compared to cry condition (see Table 1).

3.3. Patterns in neurophysiological data for 
different cry distress levels

Regarding the EEG findings, the power spectrum analysis 
showed that the relative power change in the delta band decreased 
compared to the resting condition (p < 0.001; Figure 3B). For theta 
and alpha bands, an increase of the relative power change compared 
to the resting condition was observed. Additionally, Figure  3A 
shows the topological distribution of the relative power for all 
conditions for delta, theta, and alpha bands. For different cry 
distress levels, the resting condition attenuated, and the distribution 

of the power varied. The cry condition showed in the delta band a 
frontal relative power distribution. The distress condition showed a 
fronto-parietal pattern compared to the resting condition in delta 
and theta bands, and a frontal relative power distribution for 
alpha band.

Figure 3B depicts the percentage of change in relative power for 
the different cry distress levels studied. In the delta band, all electrodes 
presented statistical differences (p < 0.001) showing a decrease in the 
percentage of change in the relative power and the mean percentage 
of change for cry was −3.15% and − 6.27% for distress conditions 
compared to resting (100%). An increase in the percentage of change 
can be observed in the theta band (p < 0.001). The mean percentage of 
change for the cry condition was 66.54 and 93.67% for distress 
compared to resting. All electrodes on alpha showed statistically 
significant differences in the percentage of change (p < 0.001). The 
mean percentage of change for cry was 166.55 and 215.69% for distress 
compared to resting.

Furthermore, a significant and diffuse pattern can be observed 
in the whole head (Figure 4, a-b-ẟ-α) for delta and alpha band when 
comparing the resting and cry conditions. Antero-posterior 
statistically significant differences were found comparing different 
cry distress levels in the delta and theta bands while the alpha band 
showed mostly frontal differences (Figure  4, b-θ-α, c-ẟ-θ-α). In 
theta band, a posterior pattern of differences occurred comparing 
resting and cry conditions (Figure 4, a-θ). Supplementary Table 1S 
(see Supplementary material) reports the results of the 
statistical analysis.

Briefly, the distress condition, acoustically associated with high 
spectral content and intensity over time, presented higher percentage 
changes in relative power in the theta and alpha bands, and conversely 
lower in the delta band compared to the cry and resting conditions.

FIGURE 2

Deep Learning (DL) and Machine Learning (ML) Models. (A) Classification procedure for both Machine and Deep Learning models. (B) Accuracy for 
both models, specificity, and sensitivity are also indicated.
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3.4. Variation in the oxygenated 
hemoglobin level during the newborn 
arousal state

Figure 5 shows the differences between the regional and functional 
arterial hemoglobin levels together with the pulse rate in the different 
newborn conditions. rSO2 decreased in the cry and distress condition 
compared to the resting condition (Figure  5A) even though no 
statistical differences were found. SpO2 also decreased in the cry and 
distress conditions (p < 0.05) compared to the resting condition 
(Figure 5B). PR-bpm increased during cry (p < 0.001) and distress 
(p < 0.001) conditions compared to resting (Figure  5C). From a 
descriptive perspective, when high spectral content and intensity are 
present acoustically, we noticed a trend of SpO2 and rSO2 decreases 
accompanied with a statistically significant increase of the PR-bpm. 
Supplementary Table  1S (see Supplementary material) shows 
significant differences between rSO2, SpO2, and PR-bpm.

3.5. Behavioral changes determined by the 
distress in cry acoustic features

Figure  6 shows the differences between all items within the 
COMFORT scale for different cry distress levels. Higher scores were 
found in the distress condition for all the features analyzed compared 
to cry and resting conditions. Supplementary Table  2S (see 

Supplementary material) shows detailed values for the statistical 
significance comparison among conditions.

3.6. Integrative approach between audio 
features and neurophysiological signals

With the aim to explore to what extent the audio features of the 
different cry distress levels were associated with the neurophysiological 
and behavioral variables analyzed in this study, we applied a Spearman 
correlation analysis and Kendall’s coefficient (W) of concordance.

Figure  7 shows the correlation matrix between all features 
analyzed. Audio features such as F0 (min) (ẟP4: R = 0.42–p = 0.04) 
and F1 (ẟP3: R = 0.43–p = 0.03, ẟC3: R = 0.42–p = 0.03) correlated 
positively to the EEG relative power in delta band, respectively. 
However, we found negative correlations when Jitter (ẟT7: R = -0.49–
p = 0.01), Shimmer (ẟT7: R = -0.45–p = 0.02) and F3 (ẟP4: R = -0.42–
p = 0.03, ẟC3: R = -0.40–p = 0.04) are compared to the delta band 
power. On the other hand, Jitter electrode F3: (R = 0.42–p = 0.03), 
F0 > 800 Hz (θP3: R = 0.41–p = 0.04) and F0 > 1,000 Hz (θP3: 
R = 0.45–p = 0.02) positively correlate with EEG on theta band power, 
respectively. Contrary to delta band, F1 (ẟP3: R = –0.49–p = 0.01, 
ẟC3: R = –0.40–p = 0.04) correlated negatively with theta band power.

On NIRS, we found a negative correlation between the rSO2 with 
cryCE (R = –0.54–p = 0.005) and a positive one between PR-bpm and 
cryCE (R = 0.67–p = 0.0003). Additionally, delta band power correlated 

TABLE 1 Audio features characteristics (Time and Frequency Domain Analysis) and statistically significant differences among conditions (Cry and 
Distress conditions).

Feature Cry Distress Statistics Value of p

Acoustic

Number of CEs 40 21 – –

Number of CUs 1,473 491 – –

Time Domain

Unvoiced CE 19.446 ± 17.510 14.825 ± 9.193 1,276 0.589

Unvoiced CE (%) 0.395 ± 0.163 0.353 ± 0.177 1,320 0.227

Cry CE 30.833 ± 31.882 30.152 ± 16.749 1,190 0.452

Cry CE (%) 0.605 ± 0.163 0.647 ± 0.177 1,160 0.227

Frequency Domain

F0(mean) 477.563 ± 109.396 412.587 ± 109.124 11.419 0.001*

F0(min) 292.807 ± 112.566 221.517 ± 71.113 13.183 0.001*

F0(max) 717.339 ± 250.428 752.683 ± 283.166 −2.619 0.015*

F0(std) 94.230 ± 64.355 141.050 ± 86.254 −12.749 0.001*

F1(mean) 1428.963 ± 406.158 1630.672 ± 470.433 −9.148 0.001*

F2(mean) 3557.709 ± 448.793 3739.816 ± 452.544 −7.738 0.001*

F3(mean) 5897.238 ± 487.545 6094.533 ± 458.543 −8.125 0.001*

High-pitch(F0 > 800 Hz) 0.029 ± 0.122 0.047 ± 0.125 −2.886 0.005*

Hyper-phonation(F0 > 1,000 Hz) 0.012 ± 0.079 0.023 ± 0.081 −2.590 0.011*

HNR 11.880 ± 4.381 6.662 ± 3.300 23.862 0.001*

Jitter 0.016 ± 0.011 0.022 ± 0.013 −10.437 0.001*

Shimmer 0.113 ± 0.044 0.143 ± 0.041 −13.228 0.001*

ANOVA and Tukey–Kramer tests were used for post hoc comparisons and a bootstrapping procedure was repeated 10,000 times to correct for normality and unbalanced categories. F values 
and p-values are shown in the two last columns. Data are presented as mean ± std. * is referred as statistically significant (p < 0.05) and ** as statistically highly significant (p < 0.001).
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positively with SpO2 (ẟP3: R = 0.43–p = 0.03). Furthermore, we found 
a negative correlation in theta band power and rSO2 (θC4: R = –0.41–
p = 0.04) and between alpha band power and SpO2 (ɑP3: R = –0.41–
p = 0.04, ɑP4: R = –0.45–p = 0.02, ɑF3: R = –0.49–p = 0.01, ɑF4: 
R = –0.46–p = 0.02 and ɑT7: R = -0.48–p = 0.01).

For the COMFORT scale, the percentage of cryCE correlated 
positively with all the scores from the COMFORT scale (p < 0.01). On 
the other hand, we found negative correlations between the percentage 
of unvoicedCE and most of the COMFORT scale scores (p < 0.01). For 
a detailed description of all statistically significant correlations found 
related to these comparisons and other interesting but non statistically 
significant correlations see Supplementary Tables 3S, 4S.

To measure the level of agreement among audio features, EEG and 
NIRS features, and the COMFORT scale scores during cry and distress 
conditions, the concordance coefficient W was computed. Figure 8 
shows W coefficients for the cry (purple) and distress (red) conditions, 
an asterisk identifies the W values greater than 0.5 indicating strong 
agreement levels among features.

Most of the EEG features exhibited strong levels of agreement with 
the audio features such as F0 (mean, min, max, std), Jitter, Shimmer, 
F1, F2, F0 > 800 and F0 > 1,000 with delta band power for cry and 
distress conditions. HNR, cryCE (%) and unvoicedCE (%) showed 
higher levels of agreement with theta and alpha band power in both 
cry and distress conditions. Additionally, F3, the percentage of high-
pitch (F0 > 800) and the percentage of hyper-phonation (F0 > 1,000) 
presented stronger levels of concordance with the alpha band power.

F0 (mean and min), HNR, F1, F2 and cryCE (%) exhibited a 
strong level of concordance with theta band power, especially for 
distress. The higher values of agreement (W > 0,75) were found for F0 
(mean and min) with theta band power (electrode C3), unvoicedCE 
(%) with theta band power (electrodes F4 and T7) in the distress 
condition and alpha band power (electrode P3) in cry condition.

Regarding NIRS features, HNR exhibited the strongest level of 
concordance in both cry and distress conditions for rSO2, SpO2 
and PR-bpm.

Concerning the COMFORT scale scores, the stronger agreements 
are present on F0 (min) for the distress condition and the resonance 
frequencies (F1, F2, andF3), hyper-phonation and cryCE (%) in the 
cry condition.

4. Discussion

This study presents an innovative multimodal analysis during 
different cry distress newborn conditions. Our findings showed, for 
the first time, that cry acoustic features are correlated with EEG, NIRS, 
facial expression and body movement changes, supporting cry 
research studies that want to prove the potential use of cry analysis as 
a clinical biomarker to describe the infant’s health status.

Additionally, we  demonstrated that there are statistically 
significant differences among the features related to the three newborn 
conditions (i.e., cry, distress, and resting). Finally, we  have also 

FIGURE 3

Differences in power spectrum for resting, cry, and distress conditions (n  =  295 segments, for both conditions, n was balanced using random 
sampling), were obtained by applying a Kruskal-Wallis test with Dunn’s test (for post-hoc comparisons). (A) Topographic EEG maps of relative power 
distribution for delta (ẟ), theta (θ), and alpha (α) bands. The upper portion of each map shows the nose (frontal area) and the lower side shows the 
occipital side. (B) Percentage of relative power changes across frequency bands and electrodes for each condition. Specifically, for Figure 3, * and the 
line below represents a statistically highly significant difference p  <  0.001 from pairwise comparisons. * and the bracket indicates a statistically highly 
significant difference p  <  0.001 for all the pairwise comparisons.
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developed a DL algorithm as an objective and automatic approach to 
identify distress cries supporting clinicians on the assessment of the 
infant’s well-being.

Limited research has been conducted to understand infant cry as 
a reflection of complex neurophysiological and behavioral functions. 
Previous studies investigated correlations between newborn cry 
acoustic features such as F0 and NIRS (Orlandi et al., 2012), neonatal 
facial expressions (De Melo et al., 2014), EEG (Futagi et al., 1998), or 
body movements (Orlandi et al., 2015) separately. However, no studies 
have been conducted to concurrently analyze cry and 
neurophysiological and behavioral signals to different newborns’ cry 
distress levels.

Our results suggested that higher cry distress levels in newborns 
represented more F0 changes, high-pitched and hyper-phonated cries 
along with tendencies of higher Jitter and Shimmer and lower HNR, 
higher amount of cryCE and less unvoiced periods, decrease delta 
activity and increase theta and alpha activation, higher heart rate, 
lower cerebral and body oxygenation, and higher scores on the 
COMFORT scale assessment of the body/face expressions. These 
results matched with the scant studies (Porter et al., 1988; Shinya et al., 

2016) investigating the relation between vagal function and the F0 of 
infant crying, even in typically developing infants. This is in line with 
Zeskind’s findings (Zeskind et  al., 1985) where cries with a faster 
repetition rate, shorter cry expirations or pauses, and higher F0 values 
may elicit more urgent caregiver responses than other vocalizations 
with less intense acoustic characteristics. Also, our results matched the 
limited literature on Jitter, Shimmer, HNR or excessive crying when 
studying irritable infants (Fuller et al., 1994) or dysphonation in adults 
(Teixeira and Fernandes, 2015). In a summary, our findings were 
consistent with the assumption that the myelinated branch of the 
vagus system is involved in both the regulation of heart rate and 
laryngeal muscles, suggesting that vagal influence on the heart may 
reflect vagal output to the laryngeal muscles, related to the F0 of infant 
crying (Shinya et al., 2016). In fact, the audio features extracted from 
the time domain analysis such as cryCE correlated negatively with 
rSO2 and positively with PR-bpm. Moreover, several items from the 
behavioral COMFORT scale were associated with F0 (mean), F1, F3, 
hyper-phonation (F0 > 1,000 Hz), unvoicedCE and cryCE percentages. 
These results were also coherent with the findings from Craig et al. 
(2001) enhancing the association of the state of arousal of the infant 

FIGURE 4

Pairwise comparisons between cry, distress, and resting in relative power. (A) Differences between cry and resting (n  =  295 segments, for both 
conditions, n was balanced using random sampling) were obtained by the Mann–Whitney test. (B) Differences between distress and resting (n  =  180 
segments, for both conditions–n was balanced using random sampling) were obtained by the Mann–Whitney test. (C) Differences between cry and 
distress (n  =  180 segments, for both conditions, n was balanced using random sampling) were obtained by the Mann–Whitney test. The color bar is 
displayed as a family-wise corrected significance level of 1–value of p: the blue darker color depicts a higher statistically significant difference between 
pairwise comparisons and the red color the opposite.

https://doi.org/10.3389/fnins.2023.1266873
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org


Laguna et al. 10.3389/fnins.2023.1266873

Frontiers in Neuroscience 10 frontiersin.org

cry acoustics with physiological measures such as higher cardiac vagal 
tone and lower oxygen levels combined with behavioral signs of cry 
distress such as facial tension, rigidity, or vigorous body movements.

Regarding neurophysiological signals, two previous (Futagi et al., 
1998; Maitre et al., 2017) studies analyzed cry episodes and EEG brain 
activity as mentioned in the Introduction section. However, these 
studies do not delve into the dynamics of the cry or the different cry 
distress levels over different frequency bands, or do they add extra 
variables that allow the identification of other patterns.

In our study, we proved that the delta band relative power of the 
different distress levels decreased compared to the resting state 
condition. Delta band in a predominant frequency with diffuse 
activity over central and occipital regions during wakefulness of a 
newborn (Eisermann et al., 2013). Therefore, it is logical that while 
other types of electrical activity decrease, resting activity increases in 
this frequency band.

Moreover, theta and alpha bands depicted an increase in the 
percentage relative power change compared to the resting condition 

FIGURE 5

Comparisons in rSO2, SpO2, and PR-bpm among the three conditions. (A) rSO2 differences among resting (n  =  441 segments), cry (n  =  272 segments), 
and distress conditions (n  =  140 segments). (B) SpO2 differences among resting (n  =  361 segments), cry (n  =  295 segments), and distress conditions 
(n  =  150 segments). (C) PR-bpm differences among resting (n  =  421 segments), cry (n  =  295 segments), and distress conditions (n  =  153 segments). 
ANOVA and Tukey–Kramer tests were applied for post hoc comparisons and the bootstrapping procedure repeated 10,000 times was applied to 
correct for normality and unbalanced categories. Resting is displayed as a black circle, cry as a purple square, and distress condition as a red triangle. 
The dotted line for each variable represents the mean value for the resting condition. *** indicates p  <  0.001 and * indicates p  <  0.05. Data are 
presented as mean  ±  standard error mean.

FIGURE 6

Comparisons of the COMFORT scale scores among conditions (resting: n  =  24 segments, cry: n  =  67 segments, and distress: n  =  25). (A) Alertness, 
Agitation, Cry, Body Movement, Muscular Tone, Facial Tension scores and (B) Total scores are reported. The Kruskal-Wallis test along with Dunn’s test 
(for post-hoc comparisons) were used. The dotted line for each variable represents the mean value for the resting condition. *** indicates p  <  0.001 
and * indicates p  <  0.05. Data are presented as mean  ±  standard error mean.
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(more than 60% for theta band and more than 100% for alpha one) 
over frontal–parietal and temporal areas. These increases in power 
over different cry distress levels suggest the association between these 
bands and stress episodes (Norman et al., 2008; Seo and Lee, 2010).

Furthermore, for frequency audio features, F0 (min), high pitch 
(F0 > 800 Hz), hyper-phonation (F0 > 1,000 Hz), jitter and shimmer 
correlated with delta and theta bands power in EEG, mainly in frontal, 
temporal and parietal electrodes. Other features such as F0 (mean), 
F0 (std), HNR, cryCE (%) and unvoicedCE (%) show evident trends 
in the same frequency bands. Moreover, some electrodes in delta, 
theta, and alpha bands correlate with the values of the COMFORT 
scale. According to the literature related to cortical activation in adults 
(Welch, 1967) and newborns (Eisermann et al., 2013), the correlations 
that we found enhance the fact that more intense cry vocalizations 
characterized by higher spectral values represent an increase of brain 
activity in theta and alpha band and a decrease in delta band power, 
implying more agitation for the newborn.

Additionally, it is important to highlight that, to the best of our 
knowledge, to this date there are no studies that have used DL with 
a CNN approach for the classification of the different cry distress 
levels of the newborn achieving robust and high accuracy results. 
Most of the literature assessing infant cry distress levels is based 

on ML classification techniques (Xie et al., 1996; Parga et al., 2020) 
with less than 90% of accuracy rates. Our DL approach obtained 
93% accuracy, 83% sensitivity, and 95% specificity, showing better 
performance in identifying distress and non-distress infant cries 
and supporting the validation of our audio manual segmentation. 
These results highlight the potential of AI tools for screening or 
decision support in the healthcare system automatically and 
objectively supporting clinicians on the assessment of stress or 
pain in the neonatal unit (e.g., after surgical interventions) or 
primary care settings (e.g., in pediatric routinary visits or follow 
up clinics).

Nevertheless, this exploratory study presents some limitations. 
The main ones are related to the small sample size presented and the 
low density of EEG (i.e., only 8 electrodes were recorded) and NIRS 
(only one frontal electrode was used) systems. Despite this limitation, 
we  were able to identify clear patterns of brain activity, statistical 
differences and associations were found among features and newborns’ 
conditions. Given the restricted sample size, additional research is 
required to substantiate the significance of solely utilizing cry acoustic 
features within a predictive model for monitoring the health status of 
newborns. Another limitation of our study is linked to the difficulty 
experienced during data acquisition because infant recordings are 

FIGURE 7

Correlation Matrix. Spearman Correlation coefficients (rho) among acoustic features, EEG relative power frequency bands, NIRS, and COMFORT scale. 
The colormap represents the rho values. The darker purple color indicates positive correlations and the blue light color the negative ones. Circle size 
indicates the statistical significance level (1-value of p), thus, a bigger circle size represents higher statistically significant levels and a smaller size 
indicates the opposite. Feature group labels: light blue is used for cry temporal features; darker blue for cry frequency features; light purple for EEG 
relative power frequency bands; light red for NIRS features; and light green for the COMFORT scale scores.
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usually affected by noise artifacts, either muscular due to neonatal 
movement or contamination due to environmental noise. In addition, 
the analysis of the NIRS and EEG while crying can be quite challenging 
due increase in excessive movement and muscle activity from the 
infant. In our specific scenario, the restriction of infant movement 
becomes notably intricate, as our intent is to assess all variables within 
a naturalistic environment. Consequently, this inherent limitation 
prompts a deliberate selection of methodological strategies designed 
to enhance the signal’s quality. Lastly, we  were not able to collect 
balanced data samples for each condition due to the nature of 
spontaneous crying. In fact, infants usually cry less often in painful or 
stressful situations. As such our data samples are limited.

Future studies will focus on expanding the sample size and utilizing 
denser EEG systems to explore the neurophysiological sources associated 
with different cry distress levels and their correlation with prematurity 
and pathological indicators. Specifically, we aim to increase the number 
of healthy term infants and include preterm and pathological infants in 
a longitudinal multicentric study. This approach will allow us to replicate 
and extend the analysis presented in this manuscript, comparing data 
from diverse sub-cohorts to validate the objective nature of infant cry as 
an indicator of the physical, emotional, and health status of newborns.

5. Conclusion

This work characterizes and compares different cry distress levels 
on acoustic signals with EEG, NIRS and the COMFORT scale scores 
supporting the idea that different acoustic patterns reflect 
neurophysiological and behavioral changes related to the newborn 
arousal state. Furthermore, according to our findings, we  have 
introduced, for the first time, an automated classifier based on a Deep 
Learning algorithm capable of detecting varying levels of cry distress. 

This classifier emerges as a potent tool that could greatly facilitate the 
objective assessment of an infant’s well-being status.

In conclusion, the present study identifies and provides 
important evidence to cover an existing literature gap related to the 
multimodal association of newborn cry acoustics with brain 
activity, cerebral and body oxygenation, heart rate, facial 
expression, and body movements. This relationship proves that the 
acoustical analysis of the infant cry may play a pivotal role to 
recognize different cry distress levels. Moreover, it strengthens the 
promising use of infant cry as a biomarker supporting caregivers 
and clinicians on the early detection of certain pathologies and 
neurodevelopmental disorders.
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FIGURE 8

Concordance Analysis. Kendall coefficients (W) between acoustic features and EEG, NIRS, and COMFORT scale for cry (purple) and distress (red) 
conditions. * indicates W coefficients greater than 0.5. W coefficients greater than 0.7 are framed with a rectangle. To group the variables within each 
feature (EEG, NIRS, and COMFORT scale), different colors were set in the figure (light purple for EEG, light red for NIRS, and light green for the 
COMFORT scale).
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